本题由2023级25班韩丰羽讲解!

平均评分 5 / 5. 投票数: 10

到目前为止还没有投票!成为第一位评论此文章。


设函数\( f(x)=x^{2}(e^{x}-a) \)

(1)当\( a=0 \)时,求曲线\( y=f(x) \)在\( (1,f(1)) \)处的切线方程.

(2)若\( f(x) \)是增函数,求\( a \)的值.

(3)当\( 0\lt a\lt 1 \)时,设\( x_{0} \)为\( f(x) \)的极大值点,证明\( 0\lt f(x_{0})\lt \displaystyle\frac{4}{e} \).



答案解析 解: (1)\( a=0 \)时 \( f(x)=x^{2}e^{x}, f'(x)=(x^{2})’e^{x}+x^{2}(e^{x})’=(x^{2}+2x)e^{x} \)

\( f(1)=e \) \( f'(1)=3e \)

\(\therefore y=f(x)\)在\( (1,f(1)) \)处切线为 \( y-f(1)=f'(1)(x-1) \) 即 \( 3ex-y-2e=0 \)

(2)\( f'(x)= [x^{2}(e^{x}-a)]’ \) \(=(x^{2})'(e^{x}-a)+(x^{2})(e^{x}-a)’ \)

\(= 2x(e^{x}-a)+x^{2}e^{x} \) \(=x(2e^{x}+xe^{x}-2a) \)

设\( g(x)=2e^{x}+xe^{x}-2a=(2+x)e^{x}-2a \)

\( g'(x)=2e^{x}+xe^{x}+x(e^{x})’ \) \(=(3+x)e^{x} \)

令\(\begin{cases} g'(x)>0 \\ x\in R \end{cases}\) 解得 \( x>-3 \) \(\therefore g(x) \uparrow (-3,+\infty) \) \(\downarrow (-\infty,-3) \)

\( f(x) = x^2(e^x – a), f'(x) = x(2e^x + xe^x – 2a) = x[(2 + x)e^x – 2a] \geq 0 \)

① \( x \geq 0 \)时,

\( (2 + x)e^x – 2a \geq 0, \)即\( 2a \leq (2 + x)e^x \)

设\( B(x) = (2 + x)e^x, \uparrow [0, +\infty) \)

\( B(x) \geq B(0) = 2, \therefore 2a \leq 2, \ a \leq 1 \)

② \( x < 0 \)时

\( (2 + x)e^x – 2a \leq 0, \)即\( 2a \geq (2 + x)e^x \)

\( B(x) = (2 + x)e^x (x < 0) \)

\( B'(x) = (2 + x)e^x + (2 + x)(e^x)’ = (3 + x)e^x \)

令\( \begin{cases} B'(x) = (3 + x)e^x > 0 \\ x < 0 \end{cases} \)

解得\( x \in (-3, 0] \)

\( f(x) = x^2(e^x – a), f'(x) = x(2e^x + xe^x – 2a) = x[(2 + x)e^x – 2a] \geq 0 \)

① \( x \geq 0 \)时,

\( (2 + x)e^x – 2a \geq 0, \)即\( 2a \leq (2 + x)e^x \)

设\( B(x) = (2 + x)e^x, \uparrow [0, +\infty) \)

\( B(x) \geq B(0) = 2, \therefore 2a \leq 2, \ a \leq 1 \)

② \( x < 0 \)时

\( (2 + x)e^x – 2a \leq 0, \)即\( 2a \geq (2 + x)e^x \)

\( B(x) = (2 + x)e^x (x < 0) \)

\( B'(x) = (2 + x)e^x + (2 + x)(e^x)’ = (3 + x)e^x \)

令\( \begin{cases} B'(x) = (3 + x)e^x > 0 \\ x < 0 \end{cases} \)

解得\( x \in (-3, 0] \)

\( \therefore B(x), \uparrow [-3, 0], \downarrow (-\infty, -3) \)

\( x \to -\infty \ \ B(x) \to 0 \)

\( x = 0 \ \ B(0) = 2 \)

\( \therefore B(x) (x \leq 0) \)图象为

B(x)图象

\( \therefore 2a \geq 2, a \geq 1 \)

由①②得 \( a = 1 \)

(3)当\(0 < a < 1\)时,设\(x_0\)为\(f(x)\)的极大值

证明\(0 < f(x_0) < \displaystyle \frac{4}{e^2}\)

解:\(f'(x) = xg(x)\) \(g(x) = 2e^x + xe^x – 2a\)

\(g(0) = 2 – 2a > 0\)

\(g(-2) = -2a < 0\)

\(\because g(x)\)在\((-3, +\infty)\)个

\(\therefore\)存在唯一\(x_0 \in (-2, 0)\)

使\(g(x_0) = (x_0 + 2)e^{x_0} – 2a = 0\)

\(\therefore a = \displaystyle \frac{e^{x_0}(x_0 + 2)}{2}\)

\(f(x_0) = x_0^2 (e^{x_0} – a)\)

\(= x_0^2 \left[e^{x_0} – \displaystyle \frac{e^{x_0}(x_0 + 2)}{2}\right] = -\displaystyle \frac{x_0^3 e^{x_0}}{2}\)

设\(h(x) = \displaystyle \frac{x^3 e^x}{2}\) \(x \in (-2, 0)\) \(h'(x)\)

\(h'(x) = -\displaystyle \frac{(3x^2)e^x + x^3(e^x)}{2} = -\displaystyle \frac{(x^2 + 3x^2)e^x}{2} = -\displaystyle \frac{x^2(x + 3)e^x}{2} < 0\)

\(\therefore h(x)\)在\((-2, 0)\)上↓

\(\therefore h(0) < h(x) < h(-2)\)

\(\therefore h(0) < f(x_0) < h(-2)\)

\(0 < f(x_0) < \displaystyle \frac{4}{e^2}\)

得证