本题由2023级22班李俊梦讲解!

平均评分 4.9 / 5. 投票数: 9

到目前为止还没有投票!成为第一位评论此文章。


在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,点$O$是$\triangle ABC$的外心,$a\cos(C – \displaystyle \frac{\pi}{3}) = \displaystyle \frac{\overrightarrow{AO} \cdot \overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AO} \cdot \overrightarrow{AC}}{|\overrightarrow{AC}|}$.

(1)求角$A$;

(2)若$\triangle ABC$外接圆的周长为$4\sqrt{3}\pi$,求$\triangle ABC$周长的取值范围.




答案解析

解:(1) 因为O是△ABC的外心,

所以\(\displaystyle \frac{\overrightarrow{AO}\cdot\overrightarrow{AB}}{|\overrightarrow{AB}|}=|\overrightarrow{AO}|\cos\angle OAB = \displaystyle \frac{c}{2}\),

\(\displaystyle \frac{\overrightarrow{AO}\cdot\overrightarrow{AC}}{|\overrightarrow{AC}|}=|\overrightarrow{AO}|\cos\angle OAC = \displaystyle \frac{b}{2}\),

则\(a\cos(C – \displaystyle \frac{\pi}{3}) = \displaystyle \frac{b + c}{2}\)。

由正弦定理,\(\sin A\cos(C – \displaystyle \frac{\pi}{3}) = \displaystyle \frac{\sin B + \sin C}{2}\),

展开得\(\sin A(\displaystyle \frac{1}{2}\cos C + \displaystyle \frac{\sqrt{3}}{2}\sin C) = \displaystyle \frac{\sin(A + C) + \sin C}{2}\),

即\(\displaystyle \frac{1}{2}\sin A\cos C + \displaystyle \frac{\sqrt{3}}{2}\sin A\sin C = \displaystyle \frac{\sin A\cos C + \cos A\sin C + \sin C}{2}\),

整理得\(\displaystyle \frac{\sqrt{3}}{2}\sin A\sin C = \displaystyle \frac{1}{2}\cos A\sin C + \displaystyle \frac{1}{2}\sin C\),

因为\(\sin C \neq 0\),所以\(\displaystyle \frac{\sqrt{3}}{2}\sin A = \displaystyle \frac{1}{2}\cos A + \displaystyle \frac{1}{2}\),

即\(\sin(A – \displaystyle \frac{\pi}{6}) = \displaystyle \frac{1}{2}\)。

因为\(A \in (0, \pi)\),所以\(A – \displaystyle \frac{\pi}{6} \in (-\displaystyle \frac{\pi}{6}, \displaystyle \frac{5\pi}{6})\),

故\(A – \displaystyle \frac{\pi}{6} = \displaystyle \frac{\pi}{6}\),解得\(A = \displaystyle \frac{\pi}{3}\)。

(2) 设△ABC外接圆半径为\(R\),由外接圆周长为\(4\sqrt{3}\pi\),得\(2\pi R = 4\sqrt{3}\pi\),解得\(R = 2\sqrt{3}\)。

由正弦定理,\(\displaystyle \frac{a}{\sin A} = \displaystyle \frac{b}{\sin B} = \displaystyle \frac{c}{\sin C} = 2R = 4\sqrt{3}\),

所以\(a = 4\sqrt{3}\sin\displaystyle \frac{\pi}{3} = 6\),\(b = 4\sqrt{3}\sin B\),\(c = 4\sqrt{3}\sin C\),且\(B + C = \displaystyle \frac{2\pi}{3}\)。

则△ABC的周长\(L = a + b + c = 6 + 4\sqrt{3}(\sin B + \sin C)\)

\(= 6 + 4\sqrt{3}[\sin B + \sin(\displaystyle \frac{2\pi}{3} – B)]\)

\(= 6 + 4\sqrt{3}(\displaystyle \frac{3}{2}\sin B + \displaystyle \frac{\sqrt{3}}{2}\cos B)\)

\(= 6 + 12\sin(B + \displaystyle \frac{\pi}{6})\)。

因为\(B \in (0, \displaystyle \frac{2\pi}{3})\),所以\(B + \displaystyle \frac{\pi}{6} \in (\displaystyle \frac{\pi}{6}, \displaystyle \frac{5\pi}{6})\),

\(\sin(B + \displaystyle \frac{\pi}{6}) \in (\displaystyle \frac{1}{2}, 1]\),

故\(L \in (12, 18]\),即△ABC周长的取值范围是\((12, 18]\)。