本题由2023级22班范至杰讲解!

平均评分 4 / 5. 投票数: 8

到目前为止还没有投票!成为第一位评论此文章。


$△ABC$的内角$A、B、C$的对边分别为$a,b,c,$已知$(c – 2b)\cos A + \displaystyle \frac{a^2 + b^2 – c^2}{2b} = 0$

(1)若$a = 4$,$b + c = 8$,求$△ABC$的面积;

(2)若角$C$为钝角,求$\displaystyle \frac{c}{b}$的取值范围.




答案解析

(1)由已知得\((c – 2b)\cos A + a\cos C = 0\),结合正弦定理、和角公式,得\(\cos A =\displaystyle \frac{1}{2}\),\(A =\displaystyle \frac{\pi}{3}\)。

由余弦定理\(\cos A =\displaystyle \frac{b^2 + c^2 – a^2}{2bc} =\displaystyle \frac{1}{2}\),即\(b^2 + c^2 – a^2 = bc\)。

代入\(a = 4\),\(b + c = 8\),得\((b + c)^2 – a^2 = 3bc\),即\(64 – 16 = 3bc\),\(bc = 16\)。

\(S_{\triangle ABC} =\displaystyle \frac{1}{2}bc\sin A =\displaystyle \frac{1}{2}×16×\displaystyle\frac{\sqrt{3}}{2} = 4\sqrt{3}\)。

(2)由正弦定理\(\displaystyle\frac{c}{b} =\displaystyle \frac{\sin C}{\sin B}\),因\(A =\displaystyle \frac{\pi}{3}\),故\(B + C =\displaystyle \frac{2\pi}{3}\),\(C =\displaystyle \frac{2\pi}{3} – B\)。

角\(C\)为钝角,得\(B \in (0,\displaystyle \frac{\pi}{6})\)。

\(\displaystyle\frac{\sin C}{\sin B} =\displaystyle \frac{\sin(\displaystyle \frac{2\pi}{3} – B)}{\sin B} =\displaystyle \frac{\sqrt{3}}{2} \cdot\displaystyle \frac{1}{\tan B} +\displaystyle \frac{1}{2}\)。

由\(B \in (0,\displaystyle \frac{\pi}{6})\),\(\tan B \in (0,\displaystyle \frac{\sqrt{3}}{3})\),\(\displaystyle\frac{1}{\tan B} \in (\sqrt{3}, +\infty)\),故\(\displaystyle\frac{c}{b} \in (2, +\infty)\)。