本题由2023级25班成允航讲解!
题目展示——先探究、再听讲
题目3
已知函数\( f(x)=x(1-\ln x) \)的单调性;
(1) 讨论\( f(x) \)的单调性;
(2) 设\( a, b \)为两个不相等的正数,且\( b\ln a – a\ln b = a – b \),证明:\( 2 <\displaystyle \frac{1}{a} + \frac{1}{b} < e \)。
解题探究——点击直达
答案解析
(1)由题意得\( f(x) = x(1 – \ln x) \),定义域\( x \in (1, +\infty) \)
\( f'(x) = 1 – (\ln x + 1) = -\ln x \)
令\( f'(x) > 0 \) 即\( -\ln x > 0 \) ,得\( x \in (0,1) \)
\( \therefore f(x) \)在\( (0,1] \)上单调递增,在\( (1, +\infty) \)上单调递减。
(2)由\( b\ln a – a\ln b = a – b \)得
\( \frac{1}{a}\left(1 – \ln \frac{1}{a}\right) = \frac{1}{b}\left(1 – \ln \frac{1}{b}\right) \), 即\( f\left(\frac{1}{a}\right) = f\left(\frac{1}{b}\right) \)
①证明\(\dfrac{1}{a} + \dfrac{1}{b} > 2\)(极值点偏移法)
设\(x_1 = \dfrac{1}{a}\),\(x_2 = \dfrac{1}{b}\) 且 \(0 < x_1 < 1 < x_2 < e\)
即证\(x_1 + x_2 > 2\),即证\(x_2 > 2 – x_1\)
\(\because x_2 \in (1, e)\) ,\(\therefore 2 – x_1 \in (1, 2)\),\(\therefore\)只需证\(f(x_2) < f(2 - x_1)\)
\(\because f(x_1) = f(x_2)\),\(\therefore\)只需证\(f(x_1) < f(2 - x_1)\)
设\(F(x) = f(x) – f(2 – x)\)
\(\therefore\)只需证\(F(x) = f(x) – f(2 – x) < 0\) 在定义域\((0, 1)\)上恒成立
\(F'(x) = f'(x) + f'(2 – x) = -\ln x – \ln(2 – x)\)
\(F”(x) = -\dfrac{1}{x} + \dfrac{1}{2 – x} = \dfrac{2x – 2}{x(2 – x)}\)
由\(x\)的取值范围可知,\(F”(x) < 0\) ,\(\therefore F'(x)\)在\((0, 1)\)单调递减,\(F'(1) = 0\),\(F'(x) > F'(1) = 0\)
\(\therefore F'(x)\)在\((0, 1)\)单调递增且\(F(1) = 0\) ,\(\therefore F(x) < F(1) = 0\)
\(\therefore f(x) – f(2 – x)\) 在定义域\((0, 1)\)上恒成立
所以,\(\dfrac{1}{a} + \dfrac{1}{b} > 2\)成立
②证明\( \dfrac{1}{a} + \dfrac{1}{b} < e \)(放缩法)
即证\( x_1 + x_2 < e \)
\( \because f(x_1) = f(x_2) \),\( \because x_1 \in (0,1) \),\( \therefore \ln x_1 < 0 \)
\( \therefore x_1(1 – \ln x_1) = x_2(1 – \ln x_2) > x_1 \)
\( \therefore x_2(1 – \ln x_2) > x_1 \),\( \therefore x_2(2 – \ln x_2) > x_1 + x_2 \)
设\( g(x) = 2x – \ln x \),定义域\( (1, e) \)
\( g'(x) = 1 – \ln x \),\( \because x \in (1, e) \),\( \therefore g'(x) > 0 \),\( g(x) \)在定义域上单调递增
\( \therefore g(x) < g(e) = e \),即\( x_1 + x_2 < e \),即\( \dfrac{1}{a} + \dfrac{1}{b} < e \)
