本题由2023级25班王雨婷讲解!
解题探究——点击直达
答案解析
设\(BD = 1\),\(CD = 4\),\(b = 4\cos C\)\(\triangle ABD\)中,\(\displaystyle \frac{BD}{\sin \displaystyle \frac{\pi}{6}} = \displaystyle \frac{c}{\sin \angle ADB}\)
所以,\(\sin \angle ADB = \sin \angle ADC = \cos C\)
即\(\displaystyle \frac{1}{\displaystyle \frac{1}{2}} = \displaystyle \frac{c}{\cos C}\),\(c = 2\cos C\)
\(\triangle ABC\)中,\(c^{2} = b^{2} + 5^{2} – 2 \times b \times 5 \times \cos C\)
\(= 16\cos^{2}C + 25 – 40\cos^{2}C = 25 – 24\cos^{2}C\)
所以\(25 – 24\cos^{2}C = 4\cos^{2}C\)
得\(\cos^{2}C = \displaystyle \frac{25}{28}\),\(\therefore \sin^{2}C = \displaystyle \frac{3}{28}\)
\(C \in (0, \pi)\) \(\therefore \sin C = \displaystyle \frac{\sqrt{21}}{14}\).
