增大字号
减小字号
数学课前练习
1. 已知P是以\(F_1,F_2\)为焦点的椭圆\(\displaystyle \frac{x^2}{a^2}+\displaystyle \frac{y^2}{b^2}=1(a>b>0)\)上的一点,若\(PF_1\perp PF_2\),且\(|PF_1|=2|PF_2|\),则此椭圆的离心率为()
A. \(\displaystyle \frac{1}{2}\)
B. \(\displaystyle \frac{2}{3}\)
C. \(\displaystyle \frac{1}{3}\)
D. \(\displaystyle \frac{\sqrt{5}}{3}\)
提交答案
2. 已知椭圆\(\displaystyle \frac{x^2}{a^2}+\displaystyle \frac{y^2}{b^2}=1(a>b>0)\)的两个焦点分别为\(F_1,F_2\),若椭圆上存在点P使得\(\angle F_1PF_2\)是钝角,则椭圆离心率的取值范围是()
A. \((0,\displaystyle \frac{\sqrt{2}}{2})\)
B. \((\displaystyle \frac{\sqrt{2}}{2},1)\)
C. \((0,\displaystyle \frac{1}{2})\)
D. \((\displaystyle \frac{1}{2},1)\)
提交答案